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Rigorous estimates of amplification rates, wave speeds and sufficient conditions 
for linear stability are derived for the manifold of solutions of the Orr-Sommerfeld 
problem governing parallel motion in the boundary layer and in round pipes. 
The estimates for channel flow (part I) are improved and compared with numerical 
results for the neutral stability of Jeffery-Hamel flow. 

1. Introduction 
This paper continues an earlier investigation (Joseph 1968, hereafter called I) 

of the linear theory of parallel flow. In I, it was shown that the application of 
isoperimetric inequalities to the Orr-Sommerfeld problem in channels leads to 
rigorous estimates of the amplification rates and wave speeds over the entire 
manifold of solutions, as well as to improved sufficient conditions for linear 
stability. This paper extends and elaborates I in three ways. First, estimates of 
eigenvalues and regions of linear stability of the same generality and rigour as 
those given in I are constructed (see $ 2) for a bounded domain approximation to 
boundary-layer flows. The estimates have the same form as those given in I but 
the iaoperimetric inequalities themselves depend on the wave-number through 
the boundary conditions at  the outer edge of the boundary layer. The channel 
estimates themselves are improved ($3 )  and compared ($4)  to Eagles (1966) 
finite difference calculation of neutral Orr-Sommerfeld limits and wave speeds 
for Jeffery-Hamel flow in diverging channels. For these flows, the critical 
Reynolds number can be very low and the estimates given in I, and here, are 
respectable a priori estimates of the true situation. The paper concludes ($  5 )  
with estimates of amplification rates, wave speed and limits of linear stability 
for arbitrary parallel motions in round pipes. 

2. Linear stability of the boundary layer 
We consider the Om-Sommerfeld problem 

(O-C)($"-OiL$)- U $  = -(i/olR)(~V-2a2~"+a4$), ( 1 4  
with boundary conditions $ ( O )  = d'(0) = $(a) = $'(a) = 0. Here C = c,+ici 
and a, R are real non-negative parameters. This problem is a dimensionless 
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representation of the problem which is conventionally assumed to govern the 
linear stability of the boundary layer (thickness Y = 6 at y = 1) in a stream 
V ( Y )  = V(co) U(y) such that U(y) = 1 and $ = $ for y > 1 with Reynolds 
number R = V(oo)S/v. 

In  asymptotic analysis, this problem is approximated with an equivalent 
problem in the bounded domain YE[O, 11 (cf. Lin 1945; Reid 1965, p. 249). Out- 
side the boundary layer (y > 1) we take U = 1 and U' = 0 and set 

$(y) = Ae-a"+ Be-Bu, 

where p2 = iaR( 1 - C) + a 2  and Re(P) is large like (aR)g. The viscous part of this 
solution, it is reasoned, decays much more rapidly than the inviscid part and it is 
conventional to seek solutions such that $ - e-ay for y > 1. Conversely, if the 
single condition $'( 1) + a$( 1) is set, then B = 0. The requirement that the velo- 
cities be continuous across the boundary layer ($(I) = $(1), $'(1) = $'(I)) then 
implies that $r(l)+a$(l) = 0. In  asymptotic theory this single condition plus 
the requirement that the solution be inviscid at  y = 1 suffices to determine a 
unique solution. Actually this inviscid requirement is equivalent to a second 
boundary condition on $, namely $"(1) = $"(1) and this suffices to guarantee 
not only the continuity of velocity but also of (zero) vorticity (since $"-a2$  

then must vanish). A second boundary condition at y = 1 is, of course, necessary 
for a well-posed problem in the bounded domain. It turns out that a priori 
estimates are not easily constructed for this 'best' bounded domain approxima- 
tion to the linear stability of the boundary layer. If, however, one relaxes the 
condition of continuous vorticity but not of continuous velocity across the 
boundary layer then, relative to the problem for which $ = Ae-aU for y 3 1,  
$ = $, $ r  = $! and at  y = 1, that is, for ( la)  and = $//I$'' 

$(O) = $'(O) = 0, $'(l)+a$(l) = 0, $"(l)+a$"(l) = 0, (1b)  
one may obtain exact, apriori, results. Asymptotic (large aR) solutions naturally 
satisfy (1 a, b) ,  approximately, and do not lead to discontinuous vorticity. We 
shall find that in the worst possible circumstance (see figure 1 and equation (1 1)) 
no neutral or amplified solutions of (1  a, b )  are possible when ccR < 25/q ,  where 
q = max U'(y) for Y E  [0,1]. Though this estimate does not establish that only 
large mR neutral solutions of (1 a, b)  can exist, it does show that such solutions 
cannot exist for sufficiently small values of aR. 

The analysis begins with relations for c,. and ci which are obtained by multi- 
plying (1 a) by the conjugate (3) of $ and integrating over the range of y, using 
(1 b) .  In this way we find that 

(2) 

(3) 

ci = {& - Q - (aB)-1(1; + 2a21q + a413}/(1;+ a21i) 

and 

where 

c, = { / 0 l[UI $! 12 + (a2U + 4 U")  I $  121 dy + a I $(1) I .)/(I? + a21f), 

I f  =/0119pI dy, 1; =/011$'12dY +al$(1)12, 

s: 1 

0 
1; =/ ($"I2dy, Q = U'$$'dy. 
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Equations (2) and (3) are formally identical (except for boundary terms) to 
equations of the same number given in I and governing channel flow. As in I, 
these equations and the relevant isoperimetric inequalities form a basis for 
estimating the allowed range of stability parameters over the manifold of solu- 
tions. We need only establish the relevant inequalities over a class of functions 
satisfying the boundary conditions which contain solutions as a subset. 

Let a(a)  be a Hilbert space containing complex-valued elements 

{$: $ ( O )  = $ ' ( O )  = 0 ,  $'+a$ = 0) 
which appear as limit points of sequences of four times continuously differen- 

tiable functions in the completion under the norm I 4'' 12dy. We assume that 

U"(y)  is continuous on Y E  [0,1], so that regular solutions (1 a,  b )  are in g(a) .  
do' 

LEMMA 1. Let $ ~ a ( a ) .  Then 
12, 2 A2,(a) I:, I: 2 Ai(a)I; and I: 2 A f ( a ) I $ ,  ( 5  a-c) 

where A2,(a) 2 an2, Ai(a) 2 n2 and Af (a )  2 ( 5 4  

with equality holding in ( 5 d )  when a = 0. 

Proof of Lemma 1 
As in I, if the inequalities ( 5 )  hold for real-valued functions in n(a), say $ E H ( a ) ,  
then they also hold for complex-valued functions. The values A,, A, and A, are 
found from minimum problems for qb E H(a) .  Thus, 

( 7 4  

The boundary condition $'"( 1) + a$"( 1) = 0 is not automatically satisfied by 
$ E H ( a )  but arises as a natural boundary condition in problems (7 b)  and ( 7  c ) .  

and q P - A 2 $  = 0, # ( O )  = $' (O)  = 0, 

$'(l)+aqb(l) = 0, $"(l)+a$"(l) = 0. 
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and 

Moreover, no arnplijed disturbances (ca > 0) of (1 a,  6 )  exist i f  

aRq < fc.1 = max [Mi, M21, 

M ,  = A,@) A,@) + 2 3 ~ 3  

M ,  = A,@) &(a) + 2a2A1(a). 

where 

and 
The graph of the bound (1 1) is given in figure 2. 

Proof of Theorem 1 

Applying Schwarz’s inequality to ( 2 )  we find that 
ci G {qIoI, - (a~1-1 ( I ;  + 20121; + a 4 ~ 3 / ( ~ ;  + a21;). 

We use the estimates 

2a11 I. G I ;  + a2I& I;/Il I. 2 A,A,, 

A,(cosh A, - cos A,) + a(sinh A, - sin A,) 

A,(cosh A, + cos A,) + a(sinh A, + sin A,) 
A,(sinh A, +sin A3) + a(cosh A, - cos A,) 

A,(sinh A, - sin A3) + a( cosh A, + cos A,) 

= 0. ( 9 c )  

as in I, to prove the theorem. 

724 D. D. Joseph 

The eigenfunctions for problem (7 a)  have the form qi = A sin hy . The principal 
eigenvalues A, (ct) are the smallest positive root of the equation 

AcosA+asinh = 0. 

The eigenfunctions for problems (7 b )  and (7 c) are 
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Just as in I, we find from (3) that 

C , ( G + + ~ G )  = ~ ( ~ ~ ) S ~ i ~ ’ 1 2 a y + a / ~ ( l ) / ~ + ( a 2 ~ ( y , j + : ~ ~ ~ ( y , ) )  0 I;, 

where yl, y2, y3 E ( 0 , l )  are mean values. From this follows: 

inequalities hold : 
THEOREM 2 .  Let C(a, R )  be any eigenvalue of ( l a ,  b) .  Then the following 

It shouId be noted that theorems 1 and 2 hold rigorously only relative to the 
problem (1  a, 6). This problem is itself an approximation; in it we replace the 
infinite domain with a finite domain, we assume that viscous effects are negligible 
outside the boundary layer and the continuity of the vorticity across the 
boundary layer is not guaranteed. The boundary conditions a t  y = 1 are, however, 
compatible with known asymptotic (large aR) results. These give continuous 
(zero) vorticity in regions well within the main flow boundary layer. But for 
small aR (say damped solutions), the conditions a t  y = 1 may not faithfully 
approximate the true problem. For flows in bounded domains such npproxima- 
tions are not necessary and all the results apply without qualification. R e  turn 
to these bounded flows next. 

3. Channel flow 
Here we compare the channel flow estimates given in I with the result of a 

finite difference calculation for the Orr-Sommerfeld stability of Jeffery-Hamel 
flow (Eagles 1966). We first derive a sharper result than that given by theorem 
1 of I. 

THEOREM 3. Let C(a ,  R)  be any eigenvalue of (1 a )  such that 

$ ( O )  = $ ’ ( O )  = qq1) = $’(1) = 0. 

Then theorem 1 holds with hi = (4*73)4, h2, = 4n2 and h2, = n2. 

Proof of Theorem 3 

For the channel flow boundary conditions (13) the boundary terms in I ;  vanish. 
The values A: = (4.73)4 and = n2 are as in I. The proof is constructed a.s for 
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theorem 1 of this paper. It remains to establish that A; = 4n2.t The Euler equa- 
tion for A, is 

$lv+h2$” = 0 and $ ( O )  = $ ’ ( O )  = $(1) = $’(1) = 0. 

A fundamental solution of this problem is q5 = A(sin hy - hy)  + B(cos hy  - 1). For 
the minimizing solution we set A = 0, h = A, = 2n. This proves theorem 3. 

+ Q:~] /Q:R,  
The estimates 

and Ml = (4.73)2 2n + 2 3 ~ x 3 ,  

M, = (4-73), 2n+ 2a%, 
are an improvement over those given in I. I n  particular, by using the better 
estimate for A;, we raise the minimum critical Reynolds number by a factor of 2. 
These new values for Ml and M, do not give the best apriori estimate of sufficient 
limits. The best estimates make use of the exact profile in a variational problem 
associated with ( 2 )  when ci = 0 (Orr 1907). Such limits are, of course, tied to 
particular flows and require numerical integration. 

4. Jeffery-Hamel flow 
Eagles (1966) has examined the stability of a family of Jeffery-Hamel flows 

in diverging wedge-shaped channels on the basis of an Orr-Sommerfeld approxi- 
mation. The relevant parameters are y = 0 M / v ,  where 0 is the semi-divergence 
angle of the wedge, M is one-half the volumetric flow rate and M/u the Reynolds 
number. Under certain smoothness conditions, Fraenkel (1963) has shown that 
such motions approximate flow in diverging channels with curved wa,lls. Pre- 
sumably the result of Eagles’ calculation has a relevance to the stability of such 
diverging channel flows and, for these, 0 is the local semi-divergence angle. I refer 
the reader to Eagles’ paper for a discussion of this point and for the justification 
and results of the Orr-Sommerfeld analysis. 

For our purpose, we need only to  set out the stability problem 

D4$-2k2D2$+k4$ = i k ( M / v ) { ( W - C )  (D2$-k2$)-D2W$}  ( 1 4 ~ )  

and 
Here D = did7 where 7 is the polar angle in the wedge and W = W(7,  y) ,  indepen- 
dent of radius. 

The problem ( la)  and (13) is equivalent to (14a)b) under the change of 

q5( - 1) = $’( - 1) = $(1) = $’(I) = 0. (14b) 

2y = 7 + I, Q: = Zk, U ( y )  = W(7,  y ) ,  U’ = ZDW, 
U” = 4D2W and R = 2M/v. 

In  these variables, stability is guaranteed by theorem 3 for k and M/u, such that 

(15) k IDWJ max (Mlv) < n(4*73),/4+max [25k3,  8nk2]. 

t Let u be the minimizing function for h,; then 

(4.73)4 = hi = q / I ;  2 47T2 I y I :  2 4n4. 

In particular, this shows that the inequality If 3 7~~ I:, which uses only two of four 
boundary conditions, is not a weak estimate. 
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Moreover, for those profiles in which D W changes sign and any solution (damped, 
neutral, amplified or higher mode), 

I n  figure 3 the estimate (15) is superposed onto Eagles’ neutral curve for the 
profile y = 4.71 ((DWI 2 3-34), Figure 4 gives a similar result for a profile with 

max 
backflow (y = 5-45, IDWJ 2 6). The comparison between the a priori estimate 

and the true Orr-Sommerfeld result is certainly no disappointment. The nu- 
merical precision of (15) relative to these very unstable profiles is, of course, lost 
for the more stable profiles, e.g. Poiseuille flow. If, however, one replaces the factor 
IDWI,,, in (15) with a mean value of IDW(, say 

max 

then the altered (15) is a numerically better estimate. Unfortunately, I see no 
way to obtain the more exact estimate without a relaxation of mathematical 
rigour. 

For the profiles with back flow Eagles found that along the lower branch of the 
neutral curve, kM/v tends to a finite value and the wave speeds are more negative 
than the smallest value of W .  The estimate (16) shows clearly that c, dominates 
Wmjn, the difference being due to an effect of the curvature of the profile. For 
y = 5.45 Eagles finds that 

( ~ , ) ~ i ~  = -0.737 6 C, 6 1.72 = ( c , ) ~ ~ ~ ,  

where the value on the left is the limiting value on the lower branch (R -+ 00, 

k -+ 0) and the value on the right is the limiting value on the upper branch 
(R + 00, k --f 4-29). For 

y = 5.45, Udin = -0.245, Fnax = 3.089, (D2W)min = - 17.98 

and (D2W)max = 7.87. 

Since (Cr)min < Win, 
it is clear from (16) that the negative wave speed is somehow associated with an 
effect of the large negative value of D2W. For I% = 0, (16) gives 

-3.88 < C, 

and for k = 4-29, C, < 3.278. 

We note that the estimate (16) can be written as an equality (see equation (12) 
of part I) ___ 

- 2(D2MT) w + ___ = cr, 
7r2 + 4k2 

where the overbar quantities are (different) mean values on the range of W and 
D2 W for q E [ - 1, I]. 
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FIaum 3. Stability of Jeffery-Hamel flow for y = 4.71, (DW),,, g 3.34. The neutral 
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amplified linear disturbance of any bounded ( -  1 < y < 1) parallel motion with a maxi- 
mum velocity less than (DW),,. The graph of the velocity profile for y = 4.71 is given 
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5. Stability of parallel flow in round pipes 
The strict mathematical problem for parallel flow in round pipes applies only 

to the Hagen-Poiseuille motion. As is true of channel and boundary-layer flows, 
it is customary to regard the linearized parallel flow problem as an approximation 
to nearly parallel motions and, on that account, to consider the Orr-Sommerfeld 
problem for arbitrary axial velocity components U(r) .  This problem does not 
lend itself to exact analysis, and nearly all of the linear work for the viscous flow 
is approximate. It is in this context that we set the theorems of this section. 

Unlike the plane problem, the Orr-Sommerfeld problem for pipe flow is not 
known to satisfy an analogue to Squires theorem. This leaves open the possibility 
that instability can here be induced first by a non-axisymmetric disturbance. 
For the Hagen-Poiseuille flow the linear theory gives absolute stability (as far 
as its result is known) against disturbances which are axisymmetric or to non- 
axisymmetric disturbances (Salwen & Grosch 1968) which are small enough. 
Evidently, the motion has strong stability properties against axisymmetric dis- 
turbances (Leite 1959). Parallel profiles which are suitably deviated from the 
parabolic can, however, be unstable to axisyrnmetric disturbances (Gill 1965). 
Though Leite reports that non-axisymmetric disturbances were more rapidly 
damped than axisymmetric disturbances, the experiments of Fox, Lessen & 
Bhat (1968) indicate that the Hagen-Poiseuille motion is unstable to an induced 
spiral mode with a first mode azimuthal variation. This aspect of the result of 
Fox et al. (spiral mode, first mode azimuthal wave-number, finite amplitude) is 
consistent with the outcome of the non-linear energy analysis of Joseph & Carmi 
(1969), though the experimental critical Reynolds number ( E 2100 ) is an order 
of magnitude larger than the value (81.49) which guarantees certain non-linear 
stability. 

The results given below apply only to the linear situation. They do, however, 
cover arbitrary velocity profiles and are mathematically rigorous. Though some 
of the estimates apply to the three-dimensional problem, the strongest results 
are stated relative to axisymmetric disturbances. 

To obtain the governing boundary-value problem, we linearize the Navier- 
Stokes equations (in cylindrical co-ordinates) around the parallel flow 

U = ( O , O ,  U(r) ) .  
For the disturbance velocity V = (V,, V,, V,) we introduce normal modes 

V ( r ,  0, z, t ,  R) - u ( r ,  a,  N ,  C ,  R)  ei(az+No-aCt), 

where u = (w, v, u) and obtain 

iaR( U - C) w = - Dp + S N w  - (2iNv/r2), 
iaR( U - C )  v = - (iiV/r)p + S$,,v + (2iiVwjr7, 

iaR( U - C) u+ RwDU = - iap +SNu 
(l/r) D(rw) + ( iN / r )  v + iau = 0, and 

where d 1 ( N 2  + 1) D = - SAT = -D(rD)---$ 
dr’ ’ r r2 

and 
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For our initial results werequire only that u, v, w andp be bounded in the Dirichlet 
~ 

norm and 
u(1) = v(1)  = w(1)  = 0. 

ci = - {(DU(uZ + wU)) + 2R-lDaN)/2a ( 1 ~ 1 ~ )  
The analysis starts with the identities 

and C, = {2a ( U  I U  12) + i ( D U ( u 5  - wU))}/2a ( I u ) ~ ) ,  
where 

((F) - {: :)) DaN(u) = - ( w ~ N W )  - (~9'21) - (uLNU) - 2iN 

= ([Owl2+ (DV~'+ ~ D u ~ ~ + ~ ~ ( I w ~ ' +  IvI2+ ( ~ 1 ~ ) )  

1 

0 
and ( a )  =I radr. 

To obtain ( 1 9 )  and (20) we eliminate p from (17) and find 

iR(NG - arB) = iNLNu - iarLZNv + 2aN(w/r) 

and 

where A = iaw(C7-C), B = ia (U-C)b ,  G = ia( U-C)u+wDU.  

R( - i N A  + D(rB))  = - iNXvw - 2N2 - + D ( r g v v )  + 2iND(w/r), (9 
We integrate ur multiplied by the complex conjugate of (22a) and wr multiplied 
by the complex conjugate of (22b) over [0,1] and subtract the result. Now 
integrating by parts and using (1 7 d )  we find that 

- ia (ru& + (wD(rB))  = i N  (vB), 

-ia (urgNZ))  + (WD(rLZNV)} = i N  (V, LYNZt) 

and 

In this way we arrive at the relation 

a (u, (W/r ) )  + i (wD(@/r))  = - N ((G/r2)  w). 

- R ( ( w 2 )  + ( v B )  + (uB)) = DaN(u) .  (24) 
Equations (19) and (20) are found as the real and imaginary parts of (24), 
using (23). 

The next two theorems establish estimates of amplification rates and waves 
speeds over the manifold of solution of (17 )  and (18 )  which are bounded in the 
Dirichlet norm. 

THEOREM 4. Let C(a, N ,  R) be any eigenvalue of (17 )  and (18) .  Then 

q ?/J8+a2+(N-1)2 ci < --- 
2a aR > 

where q0 = 2.405 is the$& zero of J&q) and q = max IDUI for r E [ O ,  11. 
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THEOREM 5. Let C(a, N ,  R) be any eigenvalue of (17) and (18). Then 

Theorem 5 follows from (20) in an obvious way. It should be noted that ( 2 6 )  
does not depend on N and is not uniform in a. A much stronger result holds for 
the axisymmetrio case (theorem G ) .  

Proof of Theorem 4 
By the arithmetic-geometric mean inequality we have 

We bound DaN(u)  from below. Using the isoperimetric inequality 

W2) 2 r:M2>7 

which holds for q5( 1) = 0, we find that 

D,, = (\DwI2+ 1DvI2+ ( D u \ ~ + ~ ~ ( ~ ( ) w ) ~ +  lv12+ lu12)+N21u/r\2) 

+-- 
2 (7% + a2) {<lWl2> + (Ivl”} + (7% + a2 + N 2 )  (lul 2, 

2 (7% + a2+ N2+ 1)  (( 1 w 12) + (ivl2)>> + (7: + a2+ N2) ( 1  up)  

+ ( INw + i v p  + INV - iw(2) 

- 2NI (VW) - (@v)I 
and ((v@)-(Gw)) c (IVl”+(lWl”. 

D,, 2 (r%+a2+(N-1)2)(IU12), 

Equations (28) and (29) are combined to form the estimate 

proving theorem 4. 

in (17d)  and (22a, b)  we obtain 

where $ = rD{( l / r )  DU} and 9o = .9N for N = 0 and go = go + a2. A Frobenius 
analysis at  the origin shows that we may obtain two non-singular solutions of 
(30a) which vanish at the origin like r and 9, respectively. Actually our results 
hold for functions w convergent in the norm ( Igow)2)  which, by Sobelev’s 
inequality, implies the boundedness of w. Hence, we shall state our results 
relative to w GI? where I? is the complex-valued Hilbert space associated with 
the above-mentioned norm and the stable boundary conditions 

For the axisymmetric case, a stronger result hoIds, Setting v = 0 and N = 0 

iaR{(U-C)9,,w-$w} = 9;w, ( 3 0 4  

w( 1) = Dw( 1) = 0, w(0)  bounded. (30b)  
We designate the same Hilbert space for real valued functions as H .  
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Equations (30a, b)  define the axisymmetric Orr-Sommerfeld problem in round 
pipes. As in the plane problem, we define 

9; = (IWl2), 
9; = (IDw12+lw/r12) = - (w ,goW)  

9; = (l~2~12)+3((1~~/~12)-()w/r212)) = (l@ow12>. and 

With N = 0, (17d) is written as 

( 3 1 4  

(31b) 

( 3 1 4  

___- - --a~, D(wr) 
r 

a 2 ( ~ u ~ 2 )  = a2((u(2+ lw(2) = 4;+a24; 

= 4; + 2 ~ 2 4 ;  + a49& 
and a2Da0 = 0 1 ~ ( l D w ( ~ +  ~ D U ] ~ + ~ ~ ( ( W ( ~ +  ( u ( ~ ) +  Iw/rI2) 

aZ(Uu2) = (U(IBw12+ lw/r12+a2[w12)-((DU/r) 1 ~ 1 2 ) .  

Now we use (31) to rewrite (27) and (20) as 

( 3 2 4  
Q ci < 2a - (3; + 2a292, + a49;)/aR(9f + a”;) 

where A = r3D{( l / r )  DU]. Of course, equations (32) can be derived directly from 

To prove the cylindrical analogue of theorems 1 and 2 of I, we need only to 

LEMMA 2 .  Let w E H. Then 

(30). 

establish the appropriate analogue for lemma 1. 

42, >, $4& 42, >, 72,921 and 32, >, @4;, (33% b, c) 

where yf = (3-83)2, 7: = (5.13)2 and 7; = (4.61)4. 

Proof of Lemma 2 
The values of q4,y; and 7f are established as minimum values for the functionals 

respectively. It is well known that the minimum value of (34a) defines the prin- 
cipal eigenvalue for the Bessel equation with eigenfunction Jl(rl r )  where 
7; = ( 3 ~ 8 3 ) ~  is the first zero of Jl(ql) = 0. 

The Euler problem for (34b) is 
N 

iF;w+?p$Pow = 0,  w(1)  = Dw(1) = 0, 

w bounded at r = 0. 

Two linearly independent solutions of this problem are r and J,(yr). A linear 
combination of these satisfies the boundary conditions, provided that 

(36b) Jl(7) - 7J;(7) = 0, 
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where primes denote differentiation with respect to the argument. The principal 
eigenvalue qz is found as the smallest positive root of (36b). 

The Euler problem for (34c) is - 
-Y:w - q2w = 0, W( 1) = Dw( 1) = 0, 
w bounded at  r = 0. ( 3 5 4  

Two linearly independent solutions of (35 c )  are Jl(i ,/(q) r )  andJ1( J(q) r ) .  A linear 

(36c) 

Lemma 2 allows us to reduce the estimation problem associated with equa- 

combination of these satisfies the boundary conditions, provided that 

JAi 47) J ;  (47 ,  - iJA 47) J;(i J7) = 0. 

The principal eigenvalue is found as the smallest positive root 7, of (36c). 

tions (32) to the problem treated in I and under 8 2 above. 

THEOREM 6. Let C(a, R)  be any eigenvalue of (30a, b). Then theorems 1 and 2 
apply, word for word, provided that A,, A, and A, are replaced by q17 qz and 7, and 
U" is replaced with A. 

The proof of theorem 6 can be constructed by following the details of the 
proofs of theorems 1 and 2. 

I wish to thank W. Hung for his help with some of the numerical calculations 
and the graphs. I am indebted to S. Carmi for help with some of the analytical 
calculations. In  particular, theorems 4 and 5 are joint results. I am, as always, 
grateful to H. Weinberger for willing help on mathematical issues. The work was 
supported under NSF grant GK-1838. 
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Note added in. proof. It is obvious enough, but deserves mention, that various 
minor improvements in the estimates of this paper are possible at  a cost in 
simplicity of the mathematical constructions. Where the numerical improve- 
ment possible seemed slight, I have chosen the simplest possible construction. 




